INVITED TALK TO THE 8TH ANNUAL RF IONOSPHERIC INTERACTIONS WORKSHOP 15-18 APRIL, 2012 SANTA FE, NM

INJECTION OF SHEAR ALFVEN WAVES IN THE INNER RADIATION BELT USING THE ARECIBO HEATER

DENNIS PAPADOPOULOS

DEPARTMENTS OF PHYSICS AND ASTRONOMY

UNIVERSITY OF MARYLAND

COLLEGE PARK

ACKNOWLEDGE: XI SHAO, S. SHARMA, G. MILIKH, B. ELIASSON UMCP-MURI C.L.CHANG BAE SYSTEMS - BRIOCHE U. INAN STANFORD - MURI W. GEKELMAN UCLA - MURI

BAE SYSTEMS

The Venue Space Plasma Environment

RB - BASICS

RB contains energetic (keV to MeV) charged particles trapped by the earth's dipole magnetic field and cold plasma (few eV)

Magnetic Configuration - Dipole
L – Shells. L=R/R_E along equator –(L,λ)
Inner RB (1.5<L<2.2)(MeV electrons & multi-MeV protons – Long lifetime)
Slot (2.2<L<3) – low electron flux
Outer (L>3) - Mostly MeV electrons;

Very dynamic relatively short lifetime

Electron flux – bimodal Proton flux monotonic

Why Care About RBs ?

Lifetime and performance of space based assets depends critically on Energetic Particle Fluxes

WHAT CONTROLS THE RB MORPHOLOGY ?

Rate of Flux Change =Sources – Losses

Sources - Natural

- Solar Wind Particles (outer belt)
- Transport –Acceleration (gap)
- Cosmic Ray Albedo (inner) n→p+e+antineutrino

Radiation Belt Remediation (RBR) What? Why?

Anthropogenic Sources

High Altitude Nuclear Explosions (HANE)- e.g. ARGUS, Starfish

beta decay of fission fragments creates Mev electrons (10²⁵/MT)

Starfish, 1962, 1.4 mt, 400 km alt.

Nuclear Weapon Archive, 2005

Current Threat: Intercept of nuclear warhead by BMD above 110 km –Iran, N. Korea – leads to loss of LEO satts within a month

Injected MeV electron trapped in inner RB till 1969

SUPERSTOMS – CARRINGTON EVENTS

FROM 1-10 NOVEMBER, 2003 OUTER BELT **CENTERED NEAR L~2.5 AND PLASMASPHERE WAS DISPLACED INWARDS LEADING IN NEW RADIATION BELT POPULATION IN THE SLOT AND INNER BELT.**

DECAY RATES DEPENDED HIGHLY ON L VALUE AND VARIED FROM 35 DAYS TO MORE THAN A YEAR

350 nT

TABLE IV

Chronological listing of outstanding geomagnetic storms recorded at Greenwich/Abinger, 1859-19548.

Date	Ranges			
	Declination (')	Horizontal force (nT)	Vertical (nT)	
01 Sep. 1859	≫92	≫625	1500	
04 Feb. 1872	125	800	>950	
17 Nov. 1882	115	>1090	>1060	
31 Oct. 1903	119	1175	1440	
25 Sep. 1909	193	1710	>1080	
14 May 1921	110	≫740	≫460	
25 Jan. 1938 ^b	126	1055	570	
16 Apr. 1938	307	1375	500	
24 Mar. 1940	131	1370	1000	
01 Mar. 1941	186	1650	1310	
18 Sep. 1941	123	1250	1115	
28 Mar. 1946	162	1660	920	
21 Sep. 1946	136	925	450	

"This storm was not included in Chapman and Bartels' (1940) list of great storms from 1857-1939.

BAKER AND KANEKAL 2007

Physics of Loss Rate Energetic Particle Motion in Dipole Fields Adiabatic Invariants

Gyro motion:

- V x B acceleration leads to gyro motion about field lines
- frequencies ~kHz
- associated 1st invariant µ, relativistic magnetic moment:

 $\mu = \frac{p^2 \sin^2 \alpha}{2m_0 B}.$

pitch angle α : $\tan \alpha = \frac{V_{\perp}}{V_{\parallel}}$

Bounce motion:

- As a particle gyrates down a field line, the pitch angle increases as B increases
- Motion along field line reverses when pitch angle reaches 90° (mirror point)
- period ~sec
- associated 2nd invariant J, longitudinal invariant:

$$J = \int_{-l_m}^{+l_m} p_{\parallel} dl$$

Drift motion:

- Gradient in magnetic field leads to drift motion around Earth: east for electrons, west for protons/ions
- period ~minutes
- associated 3rd invariant φ, magnetic flux:

$$\Phi = -\frac{2\pi B_E R_E^2}{L}$$

How Are Trapped Particles Lost in RB ? Loss cone

Particles whose mirror point is below 100 km will be lost by precipitation

Loss Cone Distribution

Particles trapped forever unless the change pitch-angle

PHYSICS OF LOSS RATE

30 25

Ο

Breaks down first adiabatic invariant $\mu = p_{\perp}^2 / B$

2.Resonant Wave-Particle (WP) interactions

10

latitude

Jay Albert

20

30

- All $\omega << \Omega_e$ waves pitch angle scatter electrons if they have the right value of $k_{z_{\perp}}$
- Elastic scattering along energy conserving trajectories (v x b_w)

$$D \equiv <\Delta \alpha \Delta \alpha > /\tau; \ \Omega_e (b_w / B_o)^2$$

For protons replace $\Omega_{\rm e}$ by $\Omega_{\rm p}$

Are there waves in the RB?

Whistler: a. Hiss
(incoherent, noise-like)
b. Chorus (coherent, discrete, spiky)
MHD: Shear Alfven,
Msonic, EMIC, FLR

Barkhausen [1919] heard audible 'whistles' whilst spying on allied communication

Lightning

Addressing RB Physics Issues

- 1. Conventional System Approach
- Simultaneous multi-point sampling at various spatial scales
- High quality integrated satellite measurements

Particles generate waves – waves make particle distribution unstable - Chicken and Egg Problem

2. System Component Physics Approach

2.1 Laboratory Experiments2.2 Active experiments by injection of ULF/ELF waves in the RB from ground or space2.3 Facilitate development of RBR system options

Radiation Belt Storm Probes (RBSP)

UMD/ONR MURI Approach PM: Bob McCoy

UMD-Stanford-UCLA-Dartmouth – VA Tech- Mishin

Puzzle: Coupled Whistler-driven Precipitation spikes with ULF (SAW) waves

Rosenberg et al. JGR 76, 8445, 1971; Lanzerotti 6 sec micropulsations >30 keV

Increase whistler energy density ->increase precipitation –RBR-> Inject whistlers (Helliwell 70's; DSX-Inan et al., 2002, Helliwell 70's) Alternative: Is it possible to inject SAW and use them to amplify whistlers or convert them to EMIC?

Speculation: SAW can lead to amplified whistler spikes

Periodic & quasiperiodic emissions: 100's of papers: Bespalov & Trakhtengerts Rev. Plasma Physics Vol. 10, 1986

Lab experiment UCLA Wang et al. PRL, April 2012

17 m, 10 sections control B 450 diagnostic ports

LAPD Experiment

Physics hypothesis: Loss cone drives whistlers leading to steady state loss (KP)- Injection of SAW couples (?) to whistlers giving enhanced spiky loss

RB AS A MASER WHY?

Take a flux tube

Loss Cone Distribution

- 1. Fundamental modes Whistler and Alfven Waves.
- 2. Magnetic field tube with low density magnetoplasma corresponds to a quasi-optical resonator.
- 3. High density and conduction ionospheric regions correspond to the mirrors with reflection and transmission coefficients.
- The active medium is the energetic particle loss cone distribution intrinsically maintained in the geometry – Population inversion
- 5. Pumping can be provided by sources of energetic particles or waves externally injected or external control of the cavity Q.

$$\frac{dn_p}{dt} = Kn_pN_2 + KN_2 - \frac{n_p}{\tau}$$
$$\frac{dN_2}{dt} = -Kn_pN_2 - \frac{N_2}{\tau_2} + R_p(t)$$

Exhibits relaxation oscillations, spiking, Q switching controlled by the pumping rate R(t)

RB SAW Injection Tests

Injects SAW upwards and ELF in the **Earth-Ionosphere** Waveguide

ICD Inner RB Injection - Arecibo

Lateral Propagation of SAW signals as MS Waves

Lysak 1998

Fig. 2.1. Example of Pc 1's (pearls) recorded at four stations simultaneously. (After J. E. Lokken, J. A. Shand, and C. S. Wright, DREP photograph 2751)

Conjugate stations detect antiphased pearl wave-packets

MS

Proof of Concept ICD Injection Experiment HAARP/DEMETER

Chang-Lebinsky-Milikh-

Papadopoulos

2.8 MHz, O-mode

N-S B Field (Gakona NI BF4) - UTC 2010-10-30 06:00:00 to 2010-10-30 06:19:30

Papadopoulos et al. GRL 2011a,b

IAR Excitation by the HAARP

HAARP – ELF/ULF Injection

New Opportinuty - Active SAW Probing of Inner RB Using the Arecibo Heater/RBSP

10000 10000 (km) (km) (km) 5000 5000 N 0 0 -5000 -5000 5000 10000 5000 10000 x (km) x (km) 0 5 -5 -5 0 5

Focus on SAW for protons and EMIC for electrons

Typical inner belt proton lifetimes: 10 MeV – decades

50 MeV – century

No SAW activity Stacking

Active Probing of Inner RB Using the Arecibo Heater Using ICD – Triggered EMIC

Focus on SAW for protons and EMIC for electrons

$\omega = h_z v_p$
$\omega = k_z V_A$
$\alpha(E,\alpha) \approx \frac{\Omega}{\cos\alpha} \sqrt{\frac{M_A^2}{2E}}$
$-k_z v_z = \left \Omega_e\right / \gamma$
$\frac{k^2 c^2}{\omega^2} = 1 - \frac{\omega_{pe}^2}{\omega(\omega + \Omega_e)} - \sum_{j=1}^3 \frac{\omega \omega_{pj}^2}{(\omega - \Omega_j)}$
$\frac{k^2 c^2}{\omega^2} \to \infty \text{ for } \omega \to \Omega_j$
As a result $1/k_z \rightarrow \Omega_e / \gamma v_z$ before
reaching resonance $(1/k_z \rightarrow 0)$

an I-IV

Proton	Resonance	
Energy	Frequencies	
30 MeV	6-16 Hz	
50 MeV	5-15 Hz	
100 MeV	3.5-9.5Hz	

HELIUM BRANCH Resonances

RBSP measures the waves and the energetic particles before during and after transitioning the L=1.4 flux tube so that we can use change detection and possibly statistical stacking

Straw-man of Arecibo Heater ICD/ RBSP Investigation

Arecibo (L≈1.4)

Tromso (L≈5.9)

SURA (L≈2.6)

The Future

• Use Ionospheric heaters (HF) to inject ULF/ELF/VLF waves in the L-shell that spans the heater and diagnose it with RBSP, Resonance, DSX, ePOP

Magneto-synchronous

RBSP

Launch May 18, 2012 2 probes, <1500 kg for both 10° inclination, 9 hr orbits ~500 km x 30,600 km

RESONANCE (Russia) Launch ~2012-14, 4-spacecraft Orbit:1800x30,000km, ~63° incl.

DSX (AFRL) Launch ~2012 MEO, wave/ particle

THANK YOU

Active Probing of Inner RB Using the Arecibo Heater Using ICD – Triggered EMIC

Focus on SAW for protons and EMIC for electrons

V V		
Proton	Resonance	
Energy	Frequencies	
30 MeV	6-16 Hz	
50 MeV	5-15 Hz	
100 MeV	3.5-9.5Hz	

HELIUM BRANCH Resonances

Frequency Selection for Protons

Arecibo Heater Experiments

RBSP measures the waves and the energetic particles before during and after transitioning the L=1.4 flux tube so that we can use change detection and possibly statistical stacking

Back of the envelope schematic of experiments with approximate amplitudes to be verified in the experiments. Better calculations to be included in the proposal are in progress. In all experiments the ionospheric state will be measured by the ISRs. The field amplitudes will be recorded on the ground in Arecibo and conjugate (AGCP)

Active Probing of Inner RB Using the Arecibo Heater Using ICD

Focus on SAW for protons and EMIC for electrons

WPI critical aspect of RB physics. RBSP will study interactions in the natural environment, A wave injection facility at Arecibo at frequencies that resonate with energetic protons and electrons offers cause and effect understanding of the induced transport processes with RBSP and other satellite diagnostics. Also study of mid-latitude IAR and SAW and EMIC propagation

SUPERSTOMS – CARRINGTON EVENTS

FROM 1-10 NOVEMBER, 2003 OUTER BELT CENTERED NEAR L~2.5 AND PLASMASPHERE WAS DISPLACED INWARDS LEADING IN NEW RADIATION BELT POPULATION IN THE SLOT AND INNER BELT.

DECAY RATES DEPENDED HIGHLY ON L VALUE AND VARIED FROM 35 DAYS TO MORE THAN A YEAR

BAKER AND KANEKAL 2007

Chronological listing of outstanding geomagnetic storms recorded at Greenwich/Abinger, 1859-1954^a.

	Ranges			
Date	Declination (')	Horizontal force (nT)	Vertical (nT)	
01 Sep. 1859	≫92	≫625	1500	
04 Feb. 1872	125	800	>950	
17 Nov. 1882	115	>1090	>1060	
31 Oct. 1903	119	1175	1440	
25 Sep. 1909	193	1710	>1080	
14 May 1921	110	≫740	≫460	
25 Jan. 1938 ^b	126	1055	570	
16 Apr. 1938	307	1375	500	
24 Mar. 1940	131	1370	1000	
01 Mar. 1941	186	1650	1310	
18 Sep. 1941	123	1250	1115	
28 Mar. 1946	162	1660	920	
21 Sep. 1946	136	925	450	

^aJones, 1955.

^bThis storm was not included in Chapman and Bartels' (1940) list of great storms from 1857–1939.